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The dynamic behavior of an elliptical pendulum subjected to external
disturbance is studied in this paper. The Lyapunov direct method is applied to
obtain conditions of stability of the equilibrium points of the system. By applying
numerical results, phase diagrams, power spectrum, period-T maps, and Lyapunov
exponents are presented to observe periodic and chaotic motions. The e!ect of the
parameters changed in the system can be found in the bifurcation and parametric
diagrams. For global analysis, the basins of attraction of each attractor of the
system are located by employing the modi"ed interpolated cell mapping (MICM)
method. Finally, several methods, the delayed feedback control, the addition of
constant torque, the addition of periodic force, adaptive control algorithm and
bang-bang control are used to control chaos e!ectively.

( 2000 Academic Press
1. INTRODUCTION

In the past one and a half decade, a large number of studies have shown that
chaotic phenomena are observed in many physical systems that possess
non-linearity [1, 2]. It was also reported that the chaotic motion occurred in many
non-linear control systems [3, 4]. Many studies of the pendulum have been
accomplished in recent years [5, 6]. This paper will study the non-linear behavior of
an elliptical pendulum system.

A lot of modern techniques are used in analyzing the deterministic non-linear
system behavior. Both analytical and computational methods are employed to
obtain the characteristics of the non-linear systems. The Lyapunov direct method is
applied to obtain conditions of stability of the equilibrium points of the system. By
applying numerical results, phase diagrams, power spectrum, period-¹ maps, and
Lyapunov exponents are presented to observe periodic and chaotic motions. The
e!ect of the parameters changed in the system can be found in the bifurcation and
parametric diagrams. For global analysis the basins of attraction of each attractor
of the system are located by employing the modi"ed interpolated cell mapping
(MICM) method. Finally, attention is shifted to the controlling of chaos. For this
0022-460X/00/101045#24 $35.00/0 ( 2000 Academic Press



Figure 1. System model.
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purpose, the delayed feedback control, the addition to constant torque, the
addition periodic force, adaptive control algorithm (ACA) control and bang-bang
control are used to control chaos.

2. EQUATIONS OF MOTION

The system considered here is depicted in Figure 1. A block connecting a particle
can slide on a "xed horizontal plane. It is a pendulum system and so the mass of the
connecting rod can be neglected, and the pendulum can be assumed as a particle.
The pendulum swings on an x}y plane. Then Lagrange's equations of motion can
be expressed as follows:

d
dt
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where m
A

is the mass of the block, m
B

is the mass of the pendulum, x
A

is the
displacement of the block, / is the angle between the y-axis and the pendulum, and
l is the length between the block and the pendulum. From Equation (2.1), it could
be rewritten as
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Equation (2.3) is a "rst integral and c
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is an arbitrary constant. When t"0, x
A
"0,
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, /"0. Substituting these initial conditions into equation (2.3), and
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or
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The parametric equations of the locus of the pendulum can be written as
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By eliminating the parameter /, the equation of the locus of the pendulum can be
expressed as
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This is an equation of ellipse, therefore the pendulum is called elliptical pendulum
[6].

By considering the damping e!ect, the equations of motion can be expressed as
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where k
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and k
2

are the damping constants.
Let x
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time q"Xt. The state equations can be written as
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where
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in which X is the natural frequency of the small vibration of the undamped system
which can be derived as follows. From equations (2.1), (2.2), and (2.4), and
eliminating xR

A
, we have
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When the vibration is small, sin/+/, cos/+1, the higher order terms can be
neglected, Equation (2.8) can be rewritten as
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and the natural frequency for linear vibration is X"(1/2n) J(m
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l .

3. STABILITY ANALYSIS BY LYAPUNOV DIRECT METHOD

The stability of the motion of the system will be investigated by Lyapunov's
direct method in this section. Since x

1
does not appear on the right-hand side of

equation (2.7), we may consider a three-dimensional case:
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The equilibrium position (0, 0, 0) is a solution of equation (3.1) the stability of which
we shall study. Equation (3.1) is the state equations for disturbances. By Taylor
series expansion, it becomes
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The higher order terms are not presented but not neglected. Construct a Lyapunov
function as
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< is the positive-de"nite function and the derivative of < through equation (3.3) is
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By Sylvester's theorem, the derivative of < is negative de"nite if
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By Lyapunov's theorem of asymptotical stability [2], equation (3.5) are the
conditions of the asymptotical stability of zero solution of the elliptical pendulum
system.

In the above analysis, the angular damping k
1

is assumed to be constant in, e.g.
equation (3.1), for which when external excitation is added, no chaotic dynamics
can be found. Therefore, another condition will be studied later on; the angular
damping is not constant but is represented by a van der Pol term k
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the dynamic equations (2.7) become
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Since x
1

also does not appear on the right-hand side of equation (3.6), we may use
the last three equations of equation (3.6) to study the stability of x

2
, x

3
, x

4
similar to

what we have done for equation (3.1). Also, by Taylor series expansion, the last
three equations of equation (3.6) become
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The characteristic equation is
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where j are eigenvalues.
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By Lyapunov's "rst approximation theory [7] and the Routh}Hurwitz criterion,
zero solution of the non-linear system consisting of the last three equations of
equation (3.6) is asymptotically stable if
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which are quite di!erent from those for the system with linear damping, equation
(3.5).

4. PHASE PORTRAITS, PERIOD-T MAP AND POWER SPECTRUM

For the system with van der Pol damping, because of the vertical vibration
A sin ut of the horizontal plane, the co-ordinate system "xed with the plane
becomes a non-inertial system. Adding the inertial force term to the constant
gravity term of the pendulum particle, the gravity of the pendulum particle is now
represented by a constant term and a harmonic term g!Au2 sinut, where g, A, u,
k
1
, k

2
are constants. The Lagrange dynamic equation for the non-inertial system

becomes
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where a"3)0, g"9)8, X"0)863, k
1
"0)25, k

2
"0)3, m

B
"1, u"1, l"0)5. The

last terms of the right-hand sides of the second and fourth equations in equation
(4.1) are the excitation terms.

The phase plane is the evolution of a set of trajectories emanating from various
initial conditions in the state space. When the solution reaches a stable state, the
asymptotic behavior of the phase trajectories is particularly interesting and the
transient behavior in the system is neglected. The period-¹ map, where ¹ is the
time period of the forcing is a better method for displaying the dynamics. Equation
(4.1) is plotted in Figures 2(a) and 2(b) for A"12)4 and 12)5, respectively. Clearly,



Figure 2. Phase portrait and period-¹ map && 3 '' for (a) A"12)4, (b) A"12)5, (c) A"12)6, phase
portraits of chaos, (d) period-¹ map && ) ''.
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the motion is periodic. But Figures 2(c) and 2(d) for A"12)6 show the chaotic state.
The points of the period-¹ map become irregular.

Another technique for the identi"cation and characterization of the system is
power spectrum. It is often used to distinguish between periodic, quasi-periodic and
chaotic behavior for a dynamical system. Any function x (t) may be represented as
a superposition of di!erent periodic components. The determination of their
relative strength is called spectral analysis. If it is periodic, the spectrum may be
a linear combination of oscillations whose frequencies are integer multiples of basic
frequency. The linear combination is called a Fourier series. If it is not periodic, the
spectrum then must be in terms of oscillations with a continuum of frequencies.
Such a representation of the spectrum is called Fourier integral of x (t). The
representation is useful for dynamical analysis. The non-autonomous system is
observed by the portraits of power spectrum in Figures 3(a) and 3(b) for period-¹
and period-2¹ steady state vibration. As A"12)6 chaos occurs, the spectrum is
a broadband as shown in Figures 3(c) and 3(d). The noise-like spectrum is the
characteristic of a chaotic dynamical system.

5. BIFURCATION DIAGRAM AND PARAMETER DIAGRAM

In the previous section, the information about the dynamics of the non-linear
system for speci"c values of the parameters is provided. The dynamics may be
viewed more completely over a range of parameter values. As the parameter is
changed, the equilibrium points and periodic motions can be created or destroyed,
or their stability can be lost. The phenomenon of sudden change in the motion as
a parameter is varied is called bifurcation, and the parameter values at which they
occur are called bifurcation points. The bifurcation diagram of the non-linear
system of equation is depicted in Figure 4. A3[12)4, 12)6] with the incremental
value of A being 0)0001.

Further, the parameter value and damping coe$cient will also be varied to
observe the behaviors of bifurcation of the system. Parameter diagrams are shown
in Figure 5.

6. LYAPUNOV EXPONENT AND LYAPUNOV DIMENSION

The Lyapunov exponent may be used to measure the sensitive dependence upon
initial conditions. It is an index for chaotic behavior. Di!erent solutions of
a dynamic system, such as "xed points, periodic motions, quasiperiodic motion,
and chaotic motion can be distinguished by it. If two trajectories start close to one
another in phase space, they will move exponentially away from each other for
small times on the average. Thus, if d

0
is a measure of the initial distance between

the two starting points, the distance is d (t)"d
0
2jt. The symbol j is called

Lyapunov exponent. The divergence of chaotic orbits can only be locally
exponential, because if the system is bounded, d (t) cannot grow to in"nity.
A measure of this divergence of orbits is that the exponential grown at many points
along a trajectory has to be averaged. When d (t) is too large, a new &&nearby''



Figure 3. Power spectrum (a) A"12)4, (b) A"12)5, (c) A"12)6, time history of chaos, (d) power
spectrum of chaos.
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Figure 4. Bifurcation diagram of A versus angular.

Figure 5. Parameter diagram of A versus k
2
.

trajectory d
0
(t) is de"ned. The Lyapunov exponent can be expressed as
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Figure 6. The largest Lyapunov exponents for A between 12)4 and 12)6.
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The signs of the Lyapunov exponents provide a qualitative picture of a system
dynamics. The criterion is

j'0 (chaotic) j)0 (regular motion).

The periodic and chaotic motions can be distinguished by the bifurcation diagram,
while the quasiperiodic motion and chaotic motion may be confused. However,
they can be distinguished by the Lyapunov exponent method. The Lyapunov
exponents of the solutions of the non-linear dynamic system are plotted in
Figure 6 as A"12)4 to 12)6.

There are a number of di!erent fractional-dimensional-like indices, e.g., the
information dimensions, Lyapunov dimensions, and correlation exponent, etc.,
the di!erence between them is often small. The Lyapunov dimension is a measure of
the complexity of the attractor. The introduction of Reference [8] the Lyapunov
dimensions d

L
as

d
L
"j#

+j
i/1

j
i

D j
j`1

D
, (6.2)

has been developed where j is de"ned by the condition

j
+
i/1

j
i
'0 and

j`1
+
i/1

j
i
(0.

The Lyapunov dimension for a strange attractor is a non-integer number. The
Lyapunov dimension and the Lyapunov exponent of the non-linear system are
listed in Table 1 for di!erent values of A.



TABLE 1

¸yapunov exponents and ¸yapunov dimensions of the system for di+erent A

A j
1

j
2

j
3

j
4

+ j
i

d
L

12)4 !0)0148 0 !0)1196 !5)4112 !5)5 1 Period-1
12)5 !0)1088 0 !0)1380 !5)2718 !5)5 1 Period-2
12)56 !0)0541 0 !0)1185 !5)2718 !5)5 1 Period-4
12)578 !0)0175 0 !0)1191 !5)3551 !5)5 1 Period-8
12)62 0)0613 0 !0)1194 !5)4064 !5)5 2)513 Chaos
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7. GLOBAL ANALYSIS BY MODIFIED INTERPOLATED CELL MAPPING
METHOD

A brief introduction of the modi"ed interpolated mapping method [9] is given as
follows. Let a point mapping system be governed by

X
n`1

"f (X
n
), X3R3, (7.1)

where f :R3PR3 and n is an integer. The basic concept of the interpolated mapping
method is to "nd the image X

n`1
by using an interpolation procedure instead of the

system. For a three-dimensional system, the region of interest D is speci"ed by
a Cartesian product [x

1min
, x

1max
]][x

2min
, x

2max
]][x

3min
, x

3max
], which is divided

into N
1
]N

2
]N

3
cells. The size of cell is h

i
"(x

* max
!x

* min
)/N

t
, i"1, 2, 3. The

"rst mappings of cells in the region of interest are constructed by numerical
integration to serve as the reference mappings for the interpolation. The
interpolated mapping of each cell is constructed within the mapping periods
assigned, such as 30 periods. Through these mapping sequences, periodic attractors
with periods of less than 30 are located by the criterion 10~5 cell size. If no periodic
attractor is located, the 30th maping of each cell is assigned to the "rst mapping,
and then iterated forward to construct the next iteration of 30 mappings. If periodic
attractors are located and a cell leads to a periodic attractor within the criterion
10~2 cell size, the cell is considered in the basin of attraction of the attractor.

For a three-dimensional system, 3033 cells are studied by the modi"ed
interpolated mapping method, where 303 is the number of the total cells divided in
each dimension of the region of interest.

The last three equations of equation (4.1) with the values of parameters are
considered as follows:

xR "y,

yR "0)5 sin(x) y2/(3!cos2 (x))#13)158 sin(x) cos(x)/(3!cos2(x))

!0)347z/(3!cos2(x))#0)579(x2!1) cos(x)y/(3!cos2(x))

!1)342A sin(x) cos(x) sin(1)1588q)/ (3!cos2(x)),

zR"!78)95 sin(x)/ (3!cos2 (x))!sin(x) cos(x)y2/(3!cos2(x))

!3)476(x2!1)y/(3!cos2(x))#0)695 cos(x)z/(3!cos2 (x)

#8)056A sin(x) sin(1)1588q)/(3!cos2(x)), (7.2)



Figure 7. (a) The projection of attractors, (b) basins of attraction for z"0)1, (c) z"0)5, (d) z"1)0
for A"12)4.
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where x is the angular co-ordinate of pendulum /, y is the angular velocity of
pendulum /Q , and z is the velocity of block xR

A
.

Three black dots in Figure 7(a) for A"12)4 indicate that the system motion is
period-1 motion and the corresponding basis of attraction are shown in Figure
7(b)}(d) with z"0)1, 0)5, 1)0 respectively. The symbols && ) '' and &&]'' denote the
cells attracted by di!erent period-1 stable solutions respectively. For A"12)5,
Figures 8(a)}8(d) show the phenomena of period-2 motion. For A"12)56, Figures
9(a)}9(d) show the phenomena of period-4 motion

8. CONTROLLING CHAOS

Several kinds of interesting non-linear dynamic behavior of the system were
studied in the previous sections. They have shown that the forced system exhibited
both regular and chaotic motion. Usually chaos is unwanted or undesirable.



Figure 8. (a) The projection of attractors, (b) basins of attraction for z"0)1, (c) z"0)5, (d) z"1)0.
for A"12)5.
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In order to improve the performance of a dynamic system or avoid the chaotic
phenomena, we need to control a chaotic system to a periodic motion which is
bene"cial for working with a particular condition. It is thus of great practical
importance to develop suitable control methods. Very recently, much interest has
been focused on this type of problem-controlling chaos [10}13]. For this purpose,
the delayed feedback control, the addition of constant motor torque, the addition
periodic force, and adaptive control algorithm (ACA) are used to control chaos. As
a result, the chaotic system can be controlled.

8.1. CONTROLLING OF CHAOS BY DELAYED FEEDBACK CONTROL

Let us consider a dynamic system which can be simulated by ordinary di!erential
equations. We imagine that the equations are unknowns, but some scalar variable



Figure 9. (a) The projection of attractors, (b) basins attraction for z"0)1, (c) z"0)5, (d) z"1)0, for
A"12)562.
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can be measured as a system output. The idea of this method is that the di!erence
D(t) between the delayed output signal y (t!q) and the output signal y (t) is used as
a control signal. In other words, we use a perturbation of the form

F(t)"K [y (t!q)!y(t)]"KD(t). (8.1)

Here q is a delay time. Choose an appropriate weight K and q of the feedback and
one can achieve the periodic state. If K"0)2, 0)04, 0)02 and q"2n/X, the results
are shown in Figure 10.

This control is achieved by the use of the output signal, which is fed back into the
system. The di!erence between the delayed output signal and the output signal
itself is used as a control signal. Only a simple delay line is required for this
feedback control. To achieve the periodic motion of the system, two parameters,
namely, the time of delay q and the weight K of the feedback, should be adjusted.



Figure 10. (a) K"0)2, the period-1¹ motion of system after feedback control.
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8.2. CONTROLLING OF CHAOS BY ADDITION OF A CONSTANT TORQUE

Interestingly, one can even add just a constant term to control or quench the
chaotic attractor to a desired periodic one in a typical non-linear non-autonomous
system. It ensures e!ective control in a very simple way. In order to understand this
simple controlling approach in a better way, this method is applied to system (4.1)
numerically.

In the absence of the constant motor torque, the system exhibits chaotic behavior
under the parameter condition A"12)6.

Consider the e!ect of the constant motor torque M added to the right-hand side
of the last equation of equation (4.1). By increasing it from zero upwards, the
chaotic behavior is then altered. Spectral analysis of the Lyapunov exponents has
proven to be the most useful dynamical diagnostic tool for examining chaotic
motions. In Figure 11, the maximal Lyapunov exponents are shown. It is clear that
the system returns to regular motion, when the constant torque M is presented in
certain intervals.

8.3. CONTROL OF CHAOS BY THE ADDITION OF PERIODIC FORCE

One can control system dynamics by the addition of external periodic force in the
chaotic state. For our purpose, the added periodic force, b sin (u6 t#/), added to the



Figure 10. (b) K"0)04, the period-2¹ motion of system after feedback control.
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right-hand side of the last equation of equation (4.1), is given. The system can then
be investigated by a numerical solution, with the remaining parameter "xed. One
case is to examine the change in the dynamics of the system as a function of b for
"xed u6 "1)5, /"0. The maximal Lyapunov exponents are estimated numerically;
the results are shown in Figure 12. At certain intervals, the maximal Lyapunov
exponents j

i
)0, which indicates that the predictability of the system, recovers.

8.4. CONTROLLING CHAOS BY ADAPTIVE CONTROL ALGORITHM (ACA)

Recently, Huberman and Lumer [12] suggested a simple and e!ective adaptive
control algorithm which utilizes an error signal proportional to the di!erence
between the goal output and the actual output of the system. The error signal
governs the change of parameters of the system, which readjusts so as to reduce the
error to zero. This method can be explained brie#y: the system motion is set back to
a desired state X

s
by adding dynamics to the control parameter P through the

evolution equation

PQ "eG(X!X
s
), (8.2)

where the function G is proportional to the di!erence between X
s
and the actual

output X, and e indicates the sti!ness of the control. The function G could be either
linear or non-linear. In order to convert the dynamics of system (4.1) from chaotic



Figure 10. (c) K"0)02, the period-4¹ motion of system after feedback control.
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motion to the desired periodic motion X
s
, the chosen parameter A is perturbed as

AQ "e(X!X
S
). (8.3)

If e"0)145, the system can reach the period-1 and period-2 as shown in Figures
13(a) and 13(b).

8.5. CONTROLLING CHAOS BY BANG-BANG CONTROL

Time-delay map is used in this control algorithm. Let

e (t)"X (t)!X (t!q) (8.4)

where q is the external torque frequency. De"ne <(t)"e(t)2 which is always
positive or zero,

<Q "2 e(t) eR (t) (8.5)

If <Q )0 then <(t)P0; e(t)P0 and X(t)PX(t!q).
By determining that equation (8.5) is less than or greater than zero, the control

law can be determined. Assume
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Figure 11. The maximal Lyapunov exponents against M.

Figure 12. The maximal Lyapunov exponents against b with u"1)5, /"0.
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If E e (t) E)d, where d'0 is a present small value, u(t)"0. If E e(t) E'd then

u(t)"!G
!K(F

3
(x

1
, x

2
, x

3
, x

4
, t)!xR

3
(t!q)) when e(t)'0,

K (F
3
(x

1
, x

2
, x

3
, x

4
, t)!xR

3
(t!q)) when e(t)(0.

These results are similar to those in the case of an external force control and
delayed feedback control. However, external perturbation or computation is



Figure 13. (a) The period-1¹ motion of system after adaptive control.

Figure 13. (b) The period-1¹ motion of system after adaptive control.
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Figure 14. Bang-Bang control is used to control period-2 for K"0)02; (a) phase portrait before
control, (b) steady state after control, (c) period-¹ map before control, (d) period-¹ map after control,
(e) time history after control, (f ) control signal.
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needed for this control. Figure 14(a) shows the phase diagram of the system before
control, and Figure 14(b) shows the phase diagram after control and each period-¹
map is plotted in Figures 14(c) and 14(d). Figure 14(e) shows the state evolution in
the (x

3
!t) plane. In Figure 14(f ) we have plotted control signal as a function of

time.

9. CONCLUSIONS

The dynamic system of the elliptical pendulum exhibits a rich variety of
non-linear behavior as certain parameters vary. Due to the e!ect of non-linearity,
regular or chaotic motions may occur. In this paper, both analytical and
computational methods have been employed to study the dynamical behavior of
the non-linear system.

The stability conditions for the system have been found by using the Lyapunov
direct method.

The periodic, and chaotic motion of the non-autonomous system are obtained by
numerical methods such as power spectrum, period-¹ map and Lyapunov
exponents. Many non-linear and chaotic phenomena have been displayed in
bifurcation diagrams. More information on the behavior of the periodic and the
chaotic motion can be found in parametric diagrams. The changes of parameter
play a major role in the non-linear system. Chaotic motion is the motion which has
a sensitive dependence on initial condition in deterministic physical systems. The
chaotic motion has been detected by using Lyapunov exponents and Lyapunov
dimensions. Although the results of the computer simulation have some errors, the
conclusions match the bifurcation diagrams. Besides, the global analysis of the
non-linear system has been obtained by using modi"ed interpolated cell mapping
(MICM).

The presence of chaotic behavior is generic for certain non-linearities, ranges of
parameters and external force. Also, quenching of the chaos is presented, so as to
improve the performance of a dynamical system. The delayed feedback control, the
addition of constant motor torque, the addition of periodic force, adaptive control
algorithm and Bang-Bang control are presented.
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